
CoreBluetooth in practice

Christian Menschel

 CocoaHeads AC August 2021

Ride on!

Bluetooth LE
Bluetooth Low Energy

Bluetooth LE

• Introduced 2009 as option with Bluetooth 4.0

• Low power consumption 0.01 – 0.50 W

• One battery for several months or years

• Managed by Bluetooth SIG (Special Interest Group)

Bluetooth LE

• Mesh feature

• Range up to 10 meter

• Max 2 Mbit (since Bluetooth 5.0)

• Awesome accuracy (cm) (since Bluetooth 5.1)

• 128-bit AES, user defined application layer

https://www.bluetooth.com/de/learn-about-bluetooth/bluetooth-technology/topology-options/

http://www.apple.com

AirTag AirPod

Tile

iBeacon

Nuki Smart Lock

Bluetooth LE

Bluetooth LE

https://developer.apple.com/library/archive/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothOverview/CoreBluetoothOverview.html#//apple_ref/doc/uid/TP40013257-CH2-SW1

https://developer.apple.com/library/archive/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothOverview/CoreBluetoothOverview.html#//apple_ref/doc/uid/TP40013257-CH2-SW1

Bluetooth LE

https://developer.apple.com/library/archive/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothOverview/CoreBluetoothOverview.html#//apple_ref/doc/uid/TP40013257-CH2-SW1

GATT Client GATT Server

https://developer.apple.com/library/archive/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothOverview/CoreBluetoothOverview.html#//apple_ref/doc/uid/TP40013257-CH2-SW1

Bluetooth LE

Advertising & Scanning

https://developer.apple.com/library/archive/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothOverview/CoreBluetoothOverview.html#//apple_ref/doc/uid/TP40013257-CH2-SW1

• Detection through a procedure based on broadcasting advertising packets

• 3 separate channels (frequencies) in order to reduce interference

• Scanner listens for a duration called the scan window

https://developer.apple.com/library/archive/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothOverview/CoreBluetoothOverview.html#//apple_ref/doc/uid/TP40013257-CH2-SW1

• Header (16 bits)

• Information whether an advertising device

allows a connection

• Payload (variable size)

• Service UUIDs

• Device name

• Manufacturer Specific Data

• Company Identifier

• Transmit power level

• Advertising Interval

• …. (many more)

Bluetooth LE

Advertising Packet Format

https://www.novelbits.io/bluetooth-low-energy-advertisements-part-1/

https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers/

https://www.novelbits.io/bluetooth-low-energy-advertisements-part-1/
http://www.apple.com

Bluetooth LE

GATT => Generic Attribute Profile,

Defines the way that two Bluetooth Low Energy devices transfer

data using concepts called Services and Characteristics.

GATT specification

➡ Services

➡ Characteristics

Image: https://developer.apple.com/library/archive/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothOverview/CoreBluetoothOverview.html#//apple_ref/doc/uid/TP40013257-CH2-SW1

➡ Standard to connect and transfer data by Bluetooth LE SIG

• Each Peripheral can connect to one central only at a time (stops advertising after connection)

• Each Service and Characteristic has one UUID (e.g. Heartrate: 0x180D (Service), 0x2A37 (Characteristic)

https://www.bluetooth.com/specifications/in-development/

https://developer.apple.com/library/archive/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothOverview/CoreBluetoothOverview.html#//apple_ref/doc/uid/TP40013257-CH2-SW1
http://www.apple.com

Weight Scale

Bluetooth LE

Blood Pressure

Cycling Speed and Cadence

Cycling Power

Running Speed and Cadence

Volume Control

3D Synchronization

A/V Remote Control

Advanced Audio Distribution
Alert Notification

Asset Tracking Automation IO Basic Imaging

Binary Sensor
BR/EDR Connection Handover

Calendar Tasks and Notes
Call Control

Continuous Glucose Monitoring

Device Identification

Coordinated Set Identification

Device Time

Dial-Up Networking

Emergency

Environmental Sensing

Generic Object Exchange

Generic A/V Distribution
Fitness Machine

Find Me

File Transfer

Generic PIM

Global Navigation Satellite System

GlucoseHands-Free Hardcopy Cable Replacement

Headset Health Device Health Thermometer

Heart Rate

HID over GATT

Human Interface Device

Insulin Delivery

Mesh

Media Control

Location and Navigation
Internet Protocol Support

Pulse Oximeter

Personal Area Networking

Object Transfer

Object Push

Multi Profile
Microphone Control

Message Access

Proximity

Physical Activity Monitor

Phone Book AccessPhone Alert Status

Time

Synchronization

SIM Access

Serial PortScan Parameters Reconnection Configuration

All GATT specifications
https://www.bluetooth.com/specifications/specs/

http://www.apple.com

Weight Scale

Bluetooth LE

Blood Pressure

Cycling Speed and Cadence

Cycling Power

Running Speed and Cadence

Volume Control

3D Synchronization

A/V Remote Control

Advanced Audio Distribution
Alert Notification

Asset Tracking Automation IO Basic Imaging

Binary Sensor
BR/EDR Connection Handover

Calendar Tasks and Notes
Call Control

Continuous Glucose Monitoring

Device Identification

Coordinated Set Identification

Device Time

Dial-Up Networking

Emergency

Environmental Sensing

Generic Object Exchange

Generic A/V Distribution
Fitness Machine

Find Me

File Transfer

Generic PIM

Global Navigation Satellite System

GlucoseHands-Free Hardcopy Cable Replacement

Headset Health Device Health Thermometer

Heart Rate

HID over GATT

Human Interface Device

Insulin Delivery

Mesh

Media Control

Location and Navigation
Internet Protocol Support

Pulse Oximeter

Personal Area Networking

Object Transfer

Object Push

Multi Profile
Microphone Control

Message Access

Proximity

Physical Activity Monitor

Phone Book AccessPhone Alert Status

Time

Synchronization

SIM Access

Serial PortScan Parameters Reconnection Configuration

All GATT specifications
https://www.bluetooth.com/specifications/specs/

http://www.apple.com

Bluetooth LE

Cycling Speed and CadenceCycling Power Heart Rate

Bluetooth LE
Profiles (GATT)

• Just a collection of Services

• Compiled by either the Bluetooth SIG (Special Interest Group) or by the peripheral designers

• The Heart Rate Profile, for example, combines the Heart Rate Service and the Device Information Service.

• See more -> Profiles Overview.

Services

Uses UUID for identification, which can be either 16-bit (for officially adopted BLE Services) or 128-bit (for custom services).

as a 16-bit UUID of 0x180D, and contains up to 3 characteristic:  

Heart Rate Measurement, Body Sensor Location and Heart Rate Control Point.

Characteristics

The lowest level concept in GATT transactions to encapsulate a single data point (like Heart Rate Measurement)

Also uses 16-bit or 128-bit UUID like 0x2A37 for Heart Rate Measurement

Descriptor

A descriptor provides additional information about a characteristic

For instance, a temperature value characteristic may have an indication of its units (e.g. Celsius)

https://www.bluetooth.com/specifications/gatt

Bluetooth LE
Profiles (GATT)

• Just a collection of Services

• Compiled by either the Bluetooth SIG (Special Interest Group) or by the peripheral designers

• The Heart Rate Profile, for example, combines the Heart Rate Service and the Device Information Service.

• See more -> Profiles Overview.

Services

• Uses UUID for identification, which can be either 16-bit (for officially adopted BLE Services) or 128-bit (for custom services).

• Heart Rate Service has a 16-bit UUID of 0x180D, and contains up to 3 characteristic:  

Heart Rate Measurement, Body Sensor Location and Heart Rate Control Point.

Characteristics

The lowest level concept in GATT transactions to encapsulate a single data point (like Heart Rate Measurement)

Also uses 16-bit or 128-bit UUID like 0x2A37 for Heart Rate Measurement

Descriptor

A descriptor provides additional information about a characteristic

For instance, a temperature value characteristic may have an indication of its units (e.g. Celsius)

https://www.bluetooth.com/specifications/gatt
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.service.heart_rate.xml

Bluetooth LE
Profiles (GATT)

• Just a collection of Services

• Compiled by either the Bluetooth SIG (Special Interest Group) or by the peripheral designers

• The Heart Rate Profile, for example, combines the Heart Rate Service and the Device Information Service.

• See more -> Profiles Overview.

Services

• Uses UUID for identification, which can be either 16-bit (for officially adopted BLE Services) or 128-bit (for custom services).

• Heart Rate Service has a 16-bit UUID of 0x180D, and contains up to 3 characteristic:  

Heart Rate Measurement, Body Sensor Location and Heart Rate Control Point.

Characteristics

• The lowest level concept in GATT transactions to encapsulate a single data point (like Heart Rate Measurement)

• Also uses 16-bit or 128-bit UUID like 0x2A37 for Heart Rate Measurement

Descriptor

• A descriptor provides additional information about a characteristic

• For instance, a temperature value characteristic may have an indication of its units (e.g. Celsius)

https://www.bluetooth.com/specifications/gatt
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.service.heart_rate.xml

Bluetooth LE
Profiles (GATT)

• Just a collection of Services

• Compiled by either the Bluetooth SIG (Special Interest Group) or by the peripheral designers

• The Heart Rate Profile, for example, combines the Heart Rate Service and the Device Information Service.

• See more -> Profiles Overview.

Services

• Uses UUID for identification, which can be either 16-bit (for officially adopted BLE Services) or 128-bit (for custom services).

• Heart Rate Service has a 16-bit UUID of 0x180D, and contains up to 3 characteristic:  

Heart Rate Measurement, Body Sensor Location and Heart Rate Control Point.

Characteristics

• The lowest level concept in GATT transactions to encapsulate a single data point (like Heart Rate Measurement)

• Also uses 16-bit or 128-bit UUID like 0x2A37 for Heart Rate Measurement

Descriptor

• A descriptor provides additional information about a characteristic

• For instance, a temperature value characteristic may have an indication of its units (e.g. Celsius)

https://www.bluetooth.com/specifications/gatt
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.service.heart_rate.xml

Bluetooth LE
UUIDs

• UUIDs are unique 128-bit (16 byte) numbers

• like: 75BEB663-74FC-4871-9737-AD184157450E

• To avoid transmitting 16 bytes for Service & Characteristics UUIDs  

Bluetooth SIG has adopted a UUID base like  

XXXXXXXX-0000-1000-8000-00805F9B34FB

• The 32 bits (X) are variable and can be used by the manufacturer

• The remaining 96 bits are defined by the Bluetooth SIG

• Heartrate would be: 0000180D-0000-1000-8000-00805F9B34FB 

short: 0x180D

Bluetooth LE

CoreBluetooth

Bluetooth LE
CoreBluetooth

https://developer.apple.com/documentation/corebluetooth

CBCentralManager
retrieveConnectedPeripheralsscanForPeripherals

for specific servicesfor specific servicesDiscover

http://www.apple.com

Bluetooth LE

https://developer.apple.com/documentation/corebluetooth

CBCentralManager
retrieveConnectedPeripheralsscanForPeripherals

connect CBPeripheral

for specific servicesfor specific services

retrieved available

CBPeripheral

did discover

CBPeripheral

CoreBluetooth

Discover

http://www.apple.com

Bluetooth LE

https://developer.apple.com/documentation/corebluetooth

CBCentralManager
retrieveConnectedPeripheralsscanForPeripherals

connect CBPeripheral

for specific services

did connect

CBPeripheral

Failed to connect

CBPeripheral

for specific services

retrieved available

CBPeripheral

did discover

CBPeripheral

CoreBluetooth

Discover

http://www.apple.com

Bluetooth LE

https://developer.apple.com/documentation/corebluetooth

CBCentralManager
retrieveConnectedPeripheralsscanForPeripherals

connect CBPeripheral

for specific services

did connect

CBPeripheral

Failed to connect

CBPeripheral

Discover Services 
for given UUIDs

did discover

CBService

for specific services

retrieved available

CBPeripheral

did discover

CBPeripheral

CoreBluetooth

Discover

http://www.apple.com

Bluetooth LE

https://developer.apple.com/documentation/corebluetooth

CBCentralManager
retrieveConnectedPeripheralsscanForPeripherals

connect CBPeripheral

for specific services

did connect

CBPeripheral

Failed to connect

CBPeripheral

Discover Services 
for given UUIDs

did discover

CBService

Discover Characteristics 
for services

did discover

CBCharacteristic

for specific services

retrieved available

CBPeripheral

did discover

CBPeripheral

CoreBluetooth

Discover

http://www.apple.com

Bluetooth LE

https://developer.apple.com/documentation/corebluetooth

readValue for characteristic

did discover

CBCharacteristic

write data for characteristic

CBPeripheral CBPeripheral

CoreBluetooth

Read/Write

http://www.apple.com

Bluetooth LE

https://developer.apple.com/documentation/corebluetooth

readValue for characteristic

didUpdateValueFor

CBCharacteristic

did discover

CBCharacteristic

write data for characteristic

didWriteValueFor

CBCharacteristic

CBPeripheral CBPeripheral

CoreBluetooth

Read/Write

http://www.apple.com

Bluetooth LE

https://developer.apple.com/documentation/corebluetooth

readValue for characteristic

didUpdateValueFor

CBCharacteristic

UI: Display value

did discover

CBCharacteristic

write data for characteristic

read bytes from Data

didWriteValueFor

CBCharacteristic

CBPeripheral CBPeripheral

CoreBluetooth

Read/Write

http://www.apple.com

Bluetooth LE
func scan() {

 guard !centralManager.isScanning, centralManager.state == .poweredOn else { return }

 centralManager.scanForPeripherals(withServices: BluetoothDataType.allServiceUUIDs)

 }

 func centralManager(_ central: CBCentralManager, didDiscover peripheral: CBPeripheral, advertisementData: [String : Any], rssi RSSI: NSNumber) {

 peripheral.delegate = self

 peripherals.append(peripheral)

 central.connect(peripheral)

 }

 func centralManager(_ central: CBCentralManager, didConnect peripheral: CBPeripheral) {

 peripheral.discoverServices(BluetoothDataType.allServiceUUIDs)

 }

 func peripheral(_ peripheral: CBPeripheral, didDiscoverServices error: Error?) {

 guard let services = peripheral.services else { return }

 services.forEach {service in

 peripheral.discoverCharacteristics(nil, for: service)

 }

 }

CoreBluetooth: Scan and connect

Bluetooth LE
func scan() {

 guard !centralManager.isScanning, centralManager.state == .poweredOn else { return }

 centralManager.scanForPeripherals(withServices: BluetoothDataType.allServiceUUIDs)

 }

 func centralManager(_ central: CBCentralManager, didDiscover peripheral: CBPeripheral, advertisementData: [String : Any], rssi RSSI: NSNumber) {

 peripheral.delegate = self

 peripherals.append(peripheral)

 central.connect(peripheral)

 }

 func centralManager(_ central: CBCentralManager, didConnect peripheral: CBPeripheral) {

 peripheral.discoverServices(BluetoothDataType.allServiceUUIDs)

 }

 func peripheral(_ peripheral: CBPeripheral, didDiscoverServices error: Error?) {

 guard let services = peripheral.services else { return }

 services.forEach {service in

 peripheral.discoverCharacteristics(nil, for: service)

 }

 }

CoreBluetooth: Scan and connect

Bluetooth LE
func scan() {

 guard !centralManager.isScanning, centralManager.state == .poweredOn else { return }

 centralManager.scanForPeripherals(withServices: BluetoothDataType.allServiceUUIDs)

 }

 func centralManager(_ central: CBCentralManager, didDiscover peripheral: CBPeripheral, advertisementData: [String : Any], rssi RSSI: NSNumber) {

 peripheral.delegate = self

 peripherals.append(peripheral)

 central.connect(peripheral)

 }

 func centralManager(_ central: CBCentralManager, didConnect peripheral: CBPeripheral) {

 peripheral.discoverServices(BluetoothDataType.allServiceUUIDs)

 }

 func peripheral(_ peripheral: CBPeripheral, didDiscoverServices error: Error?) {

 guard let services = peripheral.services else { return }

 services.forEach {service in

 peripheral.discoverCharacteristics(nil, for: service)

 }

 }

CoreBluetooth: Scan and connect

Bluetooth LE
func scan() {

 guard !centralManager.isScanning, centralManager.state == .poweredOn else { return }

 centralManager.scanForPeripherals(withServices: BluetoothDataType.allServiceUUIDs)

 }

 func centralManager(_ central: CBCentralManager, didDiscover peripheral: CBPeripheral, advertisementData: [String : Any], rssi RSSI: NSNumber) {

 peripheral.delegate = self

 peripherals.append(peripheral)

 central.connect(peripheral)

 }

 func centralManager(_ central: CBCentralManager, didConnect peripheral: CBPeripheral) {

 peripheral.discoverServices(BluetoothDataType.allServiceUUIDs)

 }

 func peripheral(_ peripheral: CBPeripheral, didDiscoverServices error: Error?) {

 guard let services = peripheral.services else { return }

 services.forEach {service in

 peripheral.discoverCharacteristics(nil, for: service)

 }

 }

CoreBluetooth: Scan and connect

Bluetooth LE
func scan() {

 guard !centralManager.isScanning, centralManager.state == .poweredOn else { return }

 centralManager.scanForPeripherals(withServices: BluetoothDataType.allServiceUUIDs)

 }

 func centralManager(_ central: CBCentralManager, didDiscover peripheral: CBPeripheral, advertisementData: [String : Any], rssi RSSI: NSNumber) {

 peripheral.delegate = self

 peripherals.append(peripheral)

 central.connect(peripheral)

 }

 func centralManager(_ central: CBCentralManager, didConnect peripheral: CBPeripheral) {

 peripheral.discoverServices(BluetoothDataType.allServiceUUIDs)

 }

 func peripheral(_ peripheral: CBPeripheral, didDiscoverServices error: Error?) {

 guard let services = peripheral.services else { return }

 services.forEach {service in

 peripheral.discoverCharacteristics(nil, for: service)

 }

 }

 func peripheral(_ peripheral: CBPeripheral, didDiscoverCharacteristicsFor service: CBService, error: Error?) {

 guard let characteristics = service.characteristics else { return }

 characteristics.forEach {characteristic in

 if characteristic.properties.contains(.read) {

 peripheral.readValue(for: characteristic)

 }

 if characteristic.properties.contains(.notify) {

 peripheral.setNotifyValue(true, for: characteristic)

 }

 }

 }

CoreBluetooth: Scan and connect

Bluetooth LE

 func peripheral(_ peripheral: CBPeripheral, didUpdateValueFor characteristic: CBCharacteristic, error: Error?) {

 guard let data = characteristic.value else {

 return nil

 }

 let bytes = [UInt8](data)

 let values: Values

 let firstBitValue = bytes[0] & 0x01

 if firstBitValue == 0 {

 // Heart Rate Value Format is 8-bit value and in the 2nd byte

 values = Values(bpm: Int(bytes[1]))

 } else {

 // Heart Rate Value Format is 16-bit and in the 2nd and 3rd bytes

 values = Values(bpm: (Int(bytes[1]) << 8) + Int(bytes[2]))

 }

 }

CoreBluetooth: Read with Bitmasking and Bitshifting

The heart rate measurement is in the 2nd, or in the 2nd and 3rd bytes, i.e. one one or in two bytes

The first byte of the first bit specifies the length of the heart rate data, 0 == 1 byte, 1 == 2 bytes

https://www.bluetooth.com/wp-content/uploads/Sitecore-Media-Library/Gatt/Xml/Characteristics/org.bluetooth.characteristic.heart_rate_measurement.xml

https://www.bluetooth.com/wp-content/uploads/Sitecore-Media-Library/Gatt/Xml/Characteristics/org.bluetooth.characteristic.heart_rate_measurement.xml

Bluetooth LE

var crank: UInt16 = 0

var crankTime: UInt16 = 0

var location = 0

let length16Bit = MemoryLayout<UInt16>.size

(data as NSData).getBytes(&crank, range: NSRange(location: location, length: length16Bit))

location += length16Bit

(data as NSData).getBytes(&crankTime, range: NSRange(location: location, length: length16Bit))

location += length16Bit

CoreBluetooth: Read with NSData getBytes and NSRange

Demo time

