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Bluetooth LE
Bluetooth Low Energy



Bluetooth LE

• Introduced 2009 as option with Bluetooth 4.0


• Low power consumption 0.01 – 0.50 W 


• One battery for several months or years


• Managed by Bluetooth SIG (Special Interest Group)



Bluetooth LE

• Mesh feature


• Range up to 10 meter


• Max 2 Mbit (since Bluetooth 5.0)


• Awesome accuracy (cm) (since Bluetooth 5.1)


• 128-bit AES, user defined application layer 

https://www.bluetooth.com/de/learn-about-bluetooth/bluetooth-technology/topology-options/

http://www.apple.com
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Bluetooth LE

https://developer.apple.com/library/archive/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothOverview/CoreBluetoothOverview.html#//apple_ref/doc/uid/TP40013257-CH2-SW1

https://developer.apple.com/library/archive/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothOverview/CoreBluetoothOverview.html#//apple_ref/doc/uid/TP40013257-CH2-SW1


Bluetooth LE

https://developer.apple.com/library/archive/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothOverview/CoreBluetoothOverview.html#//apple_ref/doc/uid/TP40013257-CH2-SW1

GATT Client GATT Server

https://developer.apple.com/library/archive/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothOverview/CoreBluetoothOverview.html#//apple_ref/doc/uid/TP40013257-CH2-SW1


Bluetooth LE

Advertising & Scanning

https://developer.apple.com/library/archive/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothOverview/CoreBluetoothOverview.html#//apple_ref/doc/uid/TP40013257-CH2-SW1

• Detection through a procedure based on broadcasting advertising packets


• 3 separate channels (frequencies) in order to reduce interference


• Scanner listens for a duration called the scan window

https://developer.apple.com/library/archive/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothOverview/CoreBluetoothOverview.html#//apple_ref/doc/uid/TP40013257-CH2-SW1


• Header (16 bits)


• Information whether an advertising device 

allows a connection


• Payload (variable size)


• Service UUIDs


• Device name


• Manufacturer Specific Data 


• Company Identifier


• Transmit power level


• Advertising Interval


• …. (many more)

Bluetooth LE

Advertising Packet Format

https://www.novelbits.io/bluetooth-low-energy-advertisements-part-1/

https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers/

https://www.novelbits.io/bluetooth-low-energy-advertisements-part-1/
http://www.apple.com


Bluetooth LE

GATT => Generic Attribute Profile,

Defines the way that two Bluetooth Low Energy devices transfer

data using concepts called Services and Characteristics.

GATT specification


➡ Services


➡ Characteristics

Image: https://developer.apple.com/library/archive/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothOverview/CoreBluetoothOverview.html#//apple_ref/doc/uid/TP40013257-CH2-SW1

➡ Standard to connect and transfer data by Bluetooth LE SIG 

• Each Peripheral can connect to one central only at a time (stops advertising after connection)


• Each Service and Characteristic has one UUID (e.g. Heartrate: 0x180D (Service), 0x2A37 (Characteristic)

https://www.bluetooth.com/specifications/in-development/

https://developer.apple.com/library/archive/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothOverview/CoreBluetoothOverview.html#//apple_ref/doc/uid/TP40013257-CH2-SW1
http://www.apple.com
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Bluetooth LE
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Bluetooth LE
Profiles (GATT)

• Just a collection of Services 


• Compiled by either the Bluetooth SIG (Special Interest Group) or by the peripheral designers


• The Heart Rate Profile, for example, combines the Heart Rate Service and the Device Information Service.


• See more -> Profiles Overview.


Services

Uses UUID for identification, which can be either 16-bit (for officially adopted BLE Services) or 128-bit (for custom services).


as a 16-bit UUID of 0x180D, and contains up to 3 characteristic:  

Heart Rate Measurement, Body Sensor Location and Heart Rate Control Point.


Characteristics

The lowest level concept in GATT transactions to encapsulate a single data point (like Heart Rate Measurement)


Also uses 16-bit or 128-bit UUID like 0x2A37 for Heart Rate Measurement


Descriptor

A descriptor provides additional information about a characteristic


For instance, a temperature value characteristic may have an indication of its units (e.g. Celsius)

https://www.bluetooth.com/specifications/gatt
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Bluetooth LE
UUIDs

• UUIDs are unique 128-bit (16 byte) numbers 


• like: 75BEB663-74FC-4871-9737-AD184157450E


• To avoid transmitting 16 bytes for Service & Characteristics UUIDs  

Bluetooth SIG has adopted a UUID base like  

XXXXXXXX-0000-1000-8000-00805F9B34FB


• The 32 bits (X) are variable and can be used by the manufacturer


• The remaining 96 bits are defined by the Bluetooth SIG


• Heartrate would be: 0000180D-0000-1000-8000-00805F9B34FB 

short: 0x180D



Bluetooth LE

CoreBluetooth



Bluetooth LE
CoreBluetooth

https://developer.apple.com/documentation/corebluetooth

CBCentralManager
retrieveConnectedPeripheralsscanForPeripherals

for specific servicesfor specific servicesDiscover

http://www.apple.com
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Bluetooth LE

https://developer.apple.com/documentation/corebluetooth
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Bluetooth LE
func scan() {


        guard !centralManager.isScanning, centralManager.state == .poweredOn else { return }

        centralManager.scanForPeripherals(withServices: BluetoothDataType.allServiceUUIDs)

    }

   

    func centralManager(_ central: CBCentralManager, didDiscover peripheral: CBPeripheral, advertisementData: [String : Any], rssi RSSI: NSNumber) {

        peripheral.delegate = self

        peripherals.append(peripheral)


  central.connect(peripheral)

    }


    func centralManager(_ central: CBCentralManager, didConnect peripheral: CBPeripheral) {

        peripheral.discoverServices(BluetoothDataType.allServiceUUIDs)

    }


    func peripheral(_ peripheral: CBPeripheral, didDiscoverServices error: Error?) {

        guard let services = peripheral.services else { return }

        services.forEach {service in

            peripheral.discoverCharacteristics(nil, for: service)

        }

    }


CoreBluetooth: Scan and connect
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func scan() {
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 func peripheral(_ peripheral: CBPeripheral, didDiscoverCharacteristicsFor service: CBService, error: Error?) {

        guard let characteristics = service.characteristics else { return }

        characteristics.forEach {characteristic in

            if characteristic.properties.contains(.read) {

                peripheral.readValue(for: characteristic)

            }

            if characteristic.properties.contains(.notify) {

                peripheral.setNotifyValue(true, for: characteristic)

            }

        }

    }


CoreBluetooth: Scan and connect



Bluetooth LE

    func peripheral(_ peripheral: CBPeripheral, didUpdateValueFor characteristic: CBCharacteristic, error: Error?) {

        guard let data = characteristic.value else {

            return nil

        }

        let bytes = [UInt8](data)


     let values: Values

        let firstBitValue = bytes[0] & 0x01

        if firstBitValue == 0 {

            // Heart Rate Value Format is 8-bit value and in the 2nd byte

            values = Values(bpm: Int(bytes[1]))

        } else {

            // Heart Rate Value Format is 16-bit and in the 2nd and 3rd bytes

            values = Values(bpm: (Int(bytes[1]) << 8) + Int(bytes[2]))

        }

    }


CoreBluetooth: Read with Bitmasking and Bitshifting

The heart rate measurement is in the 2nd, or in the 2nd and 3rd bytes, i.e. one one or in two bytes

The first byte of the first bit specifies the length of the heart rate data, 0 == 1 byte, 1 == 2 bytes

https://www.bluetooth.com/wp-content/uploads/Sitecore-Media-Library/Gatt/Xml/Characteristics/org.bluetooth.characteristic.heart_rate_measurement.xml

https://www.bluetooth.com/wp-content/uploads/Sitecore-Media-Library/Gatt/Xml/Characteristics/org.bluetooth.characteristic.heart_rate_measurement.xml


Bluetooth LE

var crank: UInt16 = 0

var crankTime: UInt16 = 0

var location = 0

let length16Bit = MemoryLayout<UInt16>.size

(data as NSData).getBytes(&crank, range: NSRange(location: location, length: length16Bit))

location += length16Bit

(data as NSData).getBytes(&crankTime, range: NSRange(location: location, length: length16Bit))

location += length16Bit


CoreBluetooth: Read with NSData getBytes and NSRange



Demo time


