
SWIFT MEMORY PERFORMANCE –
FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

ALEX HOPPEN
COCOAHEADS AACHEN

JULY ’20

FOR BEGINNERS

SWIFT MEMORY PERFORMANCE – FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

STACK

▸ Cheap allocation

▸ Decrement and increment stack
pointer

▸ Lifetime: Function call

▸ Expensive allocation

▸ Lookup of free memory in
advanced data structure

▸ Lifetime: Dynamic (until freed)

▸ Memory leaks possible

HEAP

DEMO
HEAP VS. STACK ALLOCATION IN C

SWIFT MEMORY PERFORMANCE – FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

STACK

▸ Cheap allocation

▸ Decrement and increment stack
pointer

▸ Lifetime: Function call

▸ Expensive allocation

▸ Lookup of free memory in
advanced data structure

▸ Lifetime: Dynamic (until freed)

▸ Memory leaks possible

HEAP

struct class

SWIFT MEMORY PERFORMANCE – FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

REFERENCE COUNTING

▸ Lifetime on Heap is managed through reference counting

▸ See slides 40 – 49 of “Understanding Swift Performance” from WWDC16

▸ https://developer.apple.com/wwdc16/416

SWIFT MEMORY PERFORMANCE – FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

RETAIN/RELEASE

▸ Costly because they need to be thread safe

▸ Costly = ~7ns = ~20 processor cycles

▸ Object needs to be locked before they can be retained or released

SWIFT MEMORY PERFORMANCE – FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

PASSING STRUCTS AROUND

▸ All members need to be copied

▸ All referenced result in a retain call

size

co
st

classes

structs

DEMO
PASSING SWIFT CLASSES AND STRUCTS AROUND

SWIFT MEMORY PERFORMANCE – FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

VALUE-SEMANTICS VS REFERENCE-SEMANTICS

▸ Value-semantics

▸ Better safety guarantee since the state can’t change „under our feet”

▸ Reference-semantics

▸ Allow shared state

▸ Necessary if shared state is required 😉

FOR ADVANCED

TEXT

VALUE/REFERENCE-TYPE ≠ VALUE/REFERENCE-SEMANTICS

Reference-
semantics

Value-
semantics

Value-
type

Reference-
type

Copy-On-Write (COW) Types

SWIFT MEMORY PERFORMANCE – FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

COPY-ON-WRITE TYPE

▸ Value type that contains a reference type storage

▸ Custom setters for each member variable

▸ Copy storage if it is not uniquely referenced

▸ uniquely referenced = has a retain count of 1

▸ Useful for structs that

▸ Contain a lot of data

▸ Contain a lot of reference types

DEMO
COPY-ON-WRITE-TYPE

SWIFT MEMORY PERFORMANCE – FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

ENUMS

▸ Normal enums

▸ Store values inline

▸ → Value types

▸ Indirect enums

▸ Allow circular reference

▸ → Reference types with value semantics

DEMO
PASSING DIRECT AND INDIRECT ENUMS AROUND

FOR EXPERTS

SWIFT MEMORY PERFORMANCE – FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

PROTOCOLS

▸ Size of implementing object unknown

▸ Type of implementing object (value vs. reference) unknown

▸ Existential container performs abstraction

▸ There is an abstraction cost

▸ See slides 142 – 154 of “Understanding Swift Performance” from WWDC16

▸ https://developer.apple.com/wwdc16/416

DEMO
PROTOCOLS

SWIFT MEMORY PERFORMANCE – FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

USE ENUMS INSTEAD OF PROTOCOLS

▸ If set of protocol-implementing types is known, pass enum around instead of
protocol

▸ Avoids existential abstraction layer

TEXT

protocol Shape {}

struct Line: Shape {}

class Polygon: Shape {}

extension Shape { … }

enum Shape {

 case line(Line)

 case polygon(Polygon)

}

struct Shape: ShapeMixin {}

class Polygon: ShapeMixin {}

protocol ShapeMixin {}

extension ShapeMixin { … }

FOR PERFORMANCE-NERDS

SWIFT MEMORY PERFORMANCE – FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

MEASURE PERFORMANCE IMPACT USING INSTRUMENTS

▸ Run performance critical code in
Instruments

▸ Invert Call tree to find expensive
functions

▸ You have a retain/release
bottleneck if it starts showing up
right at the top

SWIFT MEMORY PERFORMANCE – FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

LOGGING RETAIN AND RELEASE CALLS

▸ Set symbolic breakpoint on swift_retain, swift_retain_n and/or
swift_release, swift_release_n

▸ po $arg1 prints name of class being retained

▸ p $arg1 prints memory address of retained object

▸ For _n functions p $arg2 prints number by which retain count should be
increased/decreased, for other functions it’s 1

SWIFT MEMORY PERFORMANCE – FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

LOGGING RETAIN AND RELEASE CALLS

▸ If object of type MyClass at 4302715776 is retained, then print object using
expr -l Swift -- unsafeBitCast(4302715776, to: MyClass.self)

▸ If class can’t be found, step out into Swift context, afterwards class is known

DEMO
MEASURE PERFORMANCE IMPACT AND LOG RETAIN/RELEASE
CALLS

SWIFT MEMORY PERFORMANCE – FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

OUTPUT SIL LEVEL

▸ SIL (Swift Intermediate Language) contains much more low-level code

▸ Including retain and release calls

▸ Compile with the -emit-sil instead of -c to output SIL instead of object
code

▸ Retrieve Swift compiler call from Build Log

▸ Might need to remove options like -incremental that are incompatible
with -emit-sil

SWIFT MEMORY PERFORMANCE – FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

DEBUGGING SIL

▸ Add -g -Xfrontend -gsil to “Other Swift Flags”

▸ Debugger will consider SIL as source language instead of Swift

▸ Stepping is based on SIL

▸ Set symbolic breakpoint using mangled name of interesting function

▸ To unmangle names use xcrun swift-demangle <demangled-name>

DEMO
OUTPUT AND DEBUG SIL

SWIFT MEMORY PERFORMANCE – FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

SWIFT CALLING CONVENTIONS

▸ @guaranteed (aka +0): Caller guarantees that argument is alive for entire
function call

▸ Callee needs to retain object if it is being stored

▸ @owned (aka +1): Caller passes the argument with a reference count of +1

▸ Callee needs to release object if it doesn’t store it

▸ @inout: Caller passes an argument, caller may modify argument

▸ Callee needs to retain object if it is being stored

DEMO
USE INOUT FOR ARGUMENT PASSING

🤯

