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STACK HEAP
» Cheap allocation » Expensive allocation
» Decrement and increment stack » Lookup of free memory in
pointer advanced data structure
» Lifetime: Function call » Lifetime: Dynamic (until freed)

» Memory leaks possible
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HEAP VS. STACK ALLOCATION IN C
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STACK HEAP
» Cheap allocation » Expensive allocation
» Decrement and increment stack » Lookup of free memory in
pointer advanced data structure
» Lifetime: Function call » Lifetime: Dynamic (until freed)

» Memory leaks possible

*struct *class
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REFERENCE COUNTING

» Lifetime on Heap is managed through reference counting
» See slides 40 - 49 of "Understanding Swift Performance” from WWDC16

» https://developer.apple.com/wwdc16/416
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RETAIN/RELEASE

» Costly because they need to be thread safe
» Costly = ~7ns = ~20 processor cycles

» Object needs to be locked before they can be retained or released
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PASSING STRUCTS AROUND

» All members need to be copied

» All referenced result in a retain call

structs

classes

cost

size
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PASSING SWIFT CLASSES AND STRUCTS AROUND
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VALUE-SEMANTICS VS REFERENCE-SEMANTICS

» Value-semantics

» Better safety guarantee since the state can’t change ,,under our feet”
» Reference-semantics

» Allow shared state

» Necessary if shared state is required &
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VALUE/REFERENCE-TYPE = VALUE/REFERENCE=-SEMANTICS

Value- Reference-
semantics semantics
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* Copy-On-Write (COW) Types
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CorY-ON-WRITE TYPE

» Value type that contains a reference type storage
» Custom setters for each member variable

» Copy storage if it is not uniquely referenced

» uniquely referenced = has a retain count of 1
» Usetul for structs that

» Contain a lot of data

» Contain a lot of reference types
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CoPY-ON-WRITE-TYPE
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ENUMS

» Normal enums
» Store values inline
» — Value types
» Indirect enums
» Allow circular reference

» — Reference types with value semantics
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PASSING DIRECT AND INDIRECT ENUMS AROUND
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PROTOCOLS

» Size of implementing object unknown

» Type of implementing object (value vs. reference) unknown
» Existential container performs abstraction

» There is an abstraction cost

» See slides 142 - 154 of "Understanding Swift Performance” from WWDC16

» https://developer.apple.com/wwdc16/416
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USE ENUMS INSTEAD OF PROTOCOLS

» If set of protocol-implementing types is known, pass enum around instead of
protocol

» Avoids existential abstraction layer



TEXT

protocol Shape {}

struct Line: Shape {}
class Polygon: Shape {}

extension Shape { .. }

enum Shape {
case line(Line)

case polygon(Polygon)

struct Shape: ShapeMixin {}

class Polygon: ShapeMixin {}

protocol ShapeMixin {}

extension ShapeMixin { .. }
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MEASURE PERFORMANCE IMPACT USING INSTRUMENTS

Instruments

} RU n pe rfO rm a n Ce Criti Ca I COd e i n @ Y B Alex’s MacBook Pro ) [l test Run 1 of 1 | 00:00:02 ~+ = [
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Instruments

Time Profiler

Instrument

CPU Usage

» Invert Call tree to find expensive

Time Profiler » Profile » Root
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Input Filter : Call Tree Call Tree Constraints Data Mining




SWIFT MEMORY PERFORMANCE — FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

LOGGING RETAIN AND RELEASE CALLS

» Set symbolic breakpointon swift_retain, swift_retain_n and/or
swift release, swift _release_n

» po $argl prints name of class being retained
» p $argl prints memory address of retained object

» For _nfunctions p $arg2 prints number by which retain count should be
increased/decreased, for other functions it's 1
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LOGGING RETAIN AND RELEASE CALLS

» If object of type MyClass at 4302715776 is retained, then print object using
expr -1 Swift —— unsafeBitCast(4302715776, to: MyClass.self)

» If class can’t be found, step out into Swift context, afterwards class is known



UEMO

MEASURE PERFORMANCE IMPACT AND L0OG RETAIN/RELEASE
CALLS
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OutpuT SIL LEVEL

» SIL (Swift Intermediate Language) contains much more low-level code
» Including retain and release calls

» Compile with the —emit-sil instead of —C to output SIL instead of object
code

» Retrieve Swift compiler call from Build Log

» Might need to remove options like —1ncremental that are incompatible
with —em1it-sil
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DEBUGGING SIL

» Add —g —Xfrontend —gsil to "Other Swift Flags”

» Debugger will consider SIL as source language instead of Swift

» Stepping is based on SIL

» Set symbolic breakpoint using mangled name of interesting function

» Tounmangle names use xcrun swift-demangle <demangled—-name>
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OuTPUT AND DEBUG SIL
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SWIFT CALLING CONVENTIONS

» @guaranteed (aka +0): Caller guarantees that argument is alive for entire
function call

» Callee needs to retain object if it is being stored

» @owned (aka +1): Caller passes the argument with a reference count of +1
» Callee needs to release object if it doesn’t store it

» @inout: Caller passes an argument, caller may modify argument

» Callee needs to retain object if it is being stored
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USE INOUT FOR ARGUMENT PASSING






