CocoAHEADS AACHEN
ALEX HOPPEN JuLy 20

SWIFT MEMORY PERFORMANCE —
FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

FFOR BEGINNERS

SWIFT MEMORY PERFORMANCE — FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

STACK HEAP
» Cheap allocation » Expensive allocation
» Decrement and increment stack » Lookup of free memory in
pointer advanced data structure
» Lifetime: Function call » Lifetime: Dynamic (until freed)

» Memory leaks possible

UEMO

HEAP VS. STACK ALLOCATION IN C

SWIFT MEMORY PERFORMANCE — FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

STACK HEAP
» Cheap allocation » Expensive allocation
» Decrement and increment stack » Lookup of free memory in
pointer advanced data structure
» Lifetime: Function call » Lifetime: Dynamic (until freed)

» Memory leaks possible

*struct *class

SWIFT MEMORY PERFORMANCE — FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

REFERENCE COUNTING

» Lifetime on Heap is managed through reference counting
» See slides 40 - 49 of "Understanding Swift Performance” from WWDC16

» https://developer.apple.com/wwdc16/416

SWIFT MEMORY PERFORMANCE — FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

RETAIN/RELEASE

» Costly because they need to be thread safe
» Costly = ~7ns = ~20 processor cycles

» Object needs to be locked before they can be retained or released

SWIFT MEMORY PERFORMANCE — FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

PASSING STRUCTS AROUND

» All members need to be copied

» All referenced result in a retain call

structs

classes

cost

size

UEMO

PASSING SWIFT CLASSES AND STRUCTS AROUND

SWIFT MEMORY PERFORMANCE — FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

VALUE-SEMANTICS VS REFERENCE-SEMANTICS

» Value-semantics

» Better safety guarantee since the state can’t change ,,under our feet”
» Reference-semantics

» Allow shared state

» Necessary if shared state is required &

FOR ADVANCED

TEXT

VALUE/REFERENCE-TYPE = VALUE/REFERENCE=-SEMANTICS

Value- Reference-
semantics semantics

e X
v,

Reference-
type

* Copy-On-Write (COW) Types

SWIFT MEMORY PERFORMANCE — FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

CorY-ON-WRITE TYPE

» Value type that contains a reference type storage
» Custom setters for each member variable

» Copy storage if it is not uniquely referenced

» uniquely referenced = has a retain count of 1
» Usetul for structs that

» Contain a lot of data

» Contain a lot of reference types

UEMO

CoPY-ON-WRITE-TYPE

SWIFT MEMORY PERFORMANCE — FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

ENUMS

» Normal enums
» Store values inline
» — Value types
» Indirect enums
» Allow circular reference

» — Reference types with value semantics

UEMO

PASSING DIRECT AND INDIRECT ENUMS AROUND

FOR EXPERTS

SWIFT MEMORY PERFORMANCE — FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

PROTOCOLS

» Size of implementing object unknown

» Type of implementing object (value vs. reference) unknown
» Existential container performs abstraction

» There is an abstraction cost

» See slides 142 - 154 of "Understanding Swift Performance” from WWDC16

» https://developer.apple.com/wwdc16/416

SWIFT MEMORY PERFORMANCE — FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

USE ENUMS INSTEAD OF PROTOCOLS

» If set of protocol-implementing types is known, pass enum around instead of
protocol

» Avoids existential abstraction layer

TEXT

protocol Shape {}

struct Line: Shape {}
class Polygon: Shape {}

extension Shape { .. }

enum Shape {
case line(Line)

case polygon(Polygon)

struct Shape: ShapeMixin {}

class Polygon: ShapeMixin {}

protocol ShapeMixin {}

extension ShapeMixin { .. }

FOR PERFORMANCE-NERDS

SWIFT MEMORY PERFORMANCE — FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

MEASURE PERFORMANCE IMPACT USING INSTRUMENTS

Instruments

} RU n pe rfO rm a n Ce Criti Ca I COd e i n @ Y B Alex’s MacBook Pro) [l test Run 1 of 1 | 00:00:02 ~+ = [

ATTRIBUTE v target INSTRUMENT v * hreads CPUs Instruments Duplicate

Instruments

Time Profiler

Instrument

CPU Usage

» Invert Call tree to find expensive

Time Profiler » Profile » Root

f o Weightv Self Weight Symbol Name
u n Ctl O n S 2.61s 100.0% Os Vtest (17033)
2.61s 100.0% Os ¥Main Thread 0xf31994
1.52s 58.4% 1.52s P swift_retain libswiftCore.dylib
827.00 ms 31.7% 827.00 ms »swift_release_n libswiftCore.dyli
o 117.00 ms 4.4% 117.00 ms » swift_getFunctionReplacement
} YO u h ave a reta I n/re I ea Se 96.00 ms 3.6% 96.00 ms |& »performanceTest() test @
23.00 ms 0.8% 23.00 ms »DYLD-STUB$$swift_retain te:
9.00ms 0.3% 9.00 ms P getattrlist dyld
° ° ° 3.00ms 0.1% 3.00 ms pstat64 dylc
b Ottl e n e C k If It Sta rts S h OWI n g u p 1.00ms 0.0% 1.00 ms » ImagelLoaderMachQO::segUnaccessible(unsigned int) const
.00ms 0.0% 1.00 ms »ImagelLoaderMachOCompressed::eachBind(ImageLoader::LinkContext const&, unsigned long (ImageLoader::LinkContext c
.00ms 0.0% 1.00 ms » header_info::getHeaderInfoRW() ib
° h h .00ms 0.0% 1.00 ms »ImagelLoader::recursiveLoadLibraries(ImagelLoader::LinkContext const&, bool, ImageLoader::RPathChain const&, char cons
rl g t at t e tO p .00ms 0.0% 1.00 ms »ImagelLoaderMachO::getInstallPath() const
.00ms 0.0% 1.00 ms »ImagelLoader::hash(char const*) dylc
.00ms 0.0% 1.00 ms P dyld3::findInSharedCachelmage(dyld3::SharedCachelLoadInfo const&, char const* dyld3::SharedCacheFindDylibResults*)
.00ms 0.0% 1.00 ms P dyld::loadPhase5(char const* char const* dyld::LoadContext const&, unsigned int&, std::__1::vector<char const* std::__1:

Input Filter : Call Tree Call Tree Constraints Data Mining

SWIFT MEMORY PERFORMANCE — FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

LOGGING RETAIN AND RELEASE CALLS

» Set symbolic breakpointon swift_retain, swift_retain_n and/or
swift release, swift _release_n

» po $argl prints name of class being retained
» p $argl prints memory address of retained object

» For _nfunctions p $arg2 prints number by which retain count should be
increased/decreased, for other functions it's 1

SWIFT MEMORY PERFORMANCE — FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

LOGGING RETAIN AND RELEASE CALLS

» If object of type MyClass at 4302715776 is retained, then print object using
expr -1 Swift —— unsafeBitCast(4302715776, to: MyClass.self)

» If class can’t be found, step out into Swift context, afterwards class is known

UEMO

MEASURE PERFORMANCE IMPACT AND L0OG RETAIN/RELEASE
CALLS

SWIFT MEMORY PERFORMANCE — FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

OutpuT SIL LEVEL

» SIL (Swift Intermediate Language) contains much more low-level code
» Including retain and release calls

» Compile with the —emit-sil instead of —C to output SIL instead of object
code

» Retrieve Swift compiler call from Build Log

» Might need to remove options like —1ncremental that are incompatible
with —em1it-sil

SWIFT MEMORY PERFORMANCE — FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

DEBUGGING SIL

» Add —g —Xfrontend —gsil to "Other Swift Flags”

» Debugger will consider SIL as source language instead of Swift

» Stepping is based on SIL

» Set symbolic breakpoint using mangled name of interesting function

» Tounmangle names use xcrun swift-demangle <demangled—-name>

UEMO

OuTPUT AND DEBUG SIL

SWIFT MEMORY PERFORMANCE — FOR BEGINNERS, ADVANCED, EXPERTS AND FANATICS

SWIFT CALLING CONVENTIONS

» @guaranteed (aka +0): Caller guarantees that argument is alive for entire
function call

» Callee needs to retain object if it is being stored

» @owned (aka +1): Caller passes the argument with a reference count of +1
» Callee needs to release object if it doesn’t store it

» @inout: Caller passes an argument, caller may modify argument

» Callee needs to retain object if it is being stored

UEMO

USE INOUT FOR ARGUMENT PASSING

